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This will provide a lower bound for the problem. We then can solve
the ARE with q̄ � max(q, b). This artificial weight is devised based
on the asymptotic properties of the problem. The critical value of
the ARE problem provides an estimate for the upper value of γcr.
Having obtained lower and upper estimates one should search in the
relevant segment and solve the DRE [Eq. (13)] with varying γ until
a finite escape time occurs within the game duration.

IV. Simulation Results
In this section, a numerical example that illustrates the merits of

the trajectory-shaping-based guidance law is presented. We analyze
the effect on the miss distance against a bang–bang acceleration tar-
get maneuver, which was found to be the optimal evasive maneuver
under certain optimal-control and differential-game problems (e.g.,
Refs. 2, 6, and 7). We have assumed the same values as used in
the previous example (i.e., t f = 4 s, T = 0.25 s); hence the results of
Fig. 2 apply. The lateral acceleration of the pursuer is limited to 15g.
The lateral acceleration of the target is limited to 7.5g, giving the
maneuverability ratio µ = 2 (a realistic value in present-day combat
scenarios). The switching point of the evasive maneuver varies in
different simulation runs from the initial time to the point of closest
approach of the end game. We set b = 1000 and consider various
values for the nonnegative design parameter q . Because it is not
advisable to work at (or very close to) the true conjugate value of
Fig. 2, we use γ = γcr + 0.1.

Figure 3 depicts the miss distance as a function of the trajectory-
shaping weight. As q increases, smaller miss distances are obtained,
up to a certain value of q for which the miss distance approaches a
minimal value almost independent of the switch point in the major
(initial) part of the end game. Larger miss distances are obtained
only for a limited interval of switch points tgo = T –3T .

Figure 4 compares the miss distances of the linear–quadratic game
(LQDG) with the bounded-control game (DGL) of Ref. 2. The pur-
suer control in DGL is obtained by using the discontinuous control
function2

u = umax sign[Z(tgo)], tgo = t f − t (18)

where Z is the zero-effort miss distance obtained by

Z = x1 + x2tgo − T 2x3[e−θ + θ − 1], θ = tgo/T (19)

For most cases the results of LQDG are slightly better. Only for eva-
sive maneuvers that take place in the time frame tgo = T –3T is the
performance of the bounded-control game solution superior. Assum-
ing a uniformly distributed tswitch, between 0 and 4 s, we get average
miss distances of 1.4 and 1.6 m for LQDG and DGL, respectively. A
heuristic explanation for the contribution of the trajectory-shaping
term is as follows. The classical linear–quadratic game1 avoids ma-
neuvering at early stages because the integral of the control term
is negatively affected and deferring the maneuver is profitable. It
trades off early control effort for terminal miss. Adding the new
term forces the missile to react earlier to evasive maneuvers at the
expense of a larger control effort, in order to remain closer to the
collision course. This in fact is the underlying philosophy of the
hard-bound differential-game approach that counteracts the instan-
taneous zero-effort miss.

V. Conclusions
The disturbance-attenuation effect of the trajectory-shaping term

in linear–quadratic differential games was presented and analyzed.
The solution involves a search over the possible solution domain of
the associated differential Riccati equation. A contribution of this
Note is to employ available results to limit the domain of search,
thus simplifying the computation.

However, the main contribution of this research is in showing that
by increasing the weights on the trajectory-shaping term we reduce
the miss distances. The effect becomes saturated at a certain limit
value. The results obtained by applying this limit are compared with
the miss distances achieved by the solution of the hard-bound differ-
ential game, which leads to a highly discontinuous control. Under
the present formulation we obtain similar results with a smooth
controller.

Although the hard-bound differential game strategy is superior
in worst-case scenarios (where sophisticated and smart targets can
execute precisely timed evasive maneuvers), against randomly ma-
neuvering targets the new guidance law has similar performance in
terms of average miss distances.

In summary, to improve the performance of the classical linear–
quadratic game solution against stressing target maneuvers this
preliminary study advocates using for guidance law synthesis the
linear–quadratic game formulation with the inclusion of a trajectory-
shaping term in the cost function.
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Earth Escape by Ideal Sail
and Solar-Photon Thrustor Spacecraft

Giovanni Mengali∗ and Alessandro A. Quarta†
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Introduction

S OLAR sails use the solar radiation pressure on a large reflect-
ing surface to obtain low-thrust propulsion. This technology has

been identified as enabling many recent space mission concepts. An
interesting application involves the study of escape trajectories from
the Earth. Early contributions to this subject date back to Sands1 and
Fimple,2 who considered initial circular orbits and used other simpli-
fying assumptions, and to Sackett and Edelbaum.3 Locally optimal
steering laws for a flat sail have been considered in various forms
by different authors.4−6 In a recent paper Coverstone and Prussing7

investigated the problem of Earth escape from a geosynchronous
transfer orbit with an ideal flat sail through a sail-force control algo-
rithm that maximizes the instantaneous rate of increase of the total
orbital energy. In their analysis a spherical gravity model for the
Earth is assumed, and only the solar gravitational perturbation is
included.
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The conventional ideal flat sail is known to be quite inefficient at
high values of the sail cone angle α due to the fact that the thrust
exerted by the solar radiation pressure is proportional to cos2 α. Sig-
nificant performance improvements over a flat sail may be obtained
by separating the functions of collecting and directing the solar ra-
diation, as is done by a solar photon thrustor (SPT).8,9 In fact, the
thrust for a SPT sail is proportional to cos α. Despite this, a detailed
engineering study of an SPT sail has not yet been performed.

This Note extends the results by Coverstone and Prussing7 in var-
ious ways. First, assuming the same control logic aimed at maximiz-
ing the instantaneous rate of energy change, a compact expression
for the control law of a SPT sail is derived using vector notation. Sec-
ond, a comparison is made with the performance of a flat ideal solar
sail. Third, in addition to the solar gravitational attraction, other per-
turbations on the solar-sail trajectory are taken into account. These
include the Earth oblateness, the lunar gravitational attraction, the
shadowing effects of the Earth, and the variation in the magnitude
of the solar flux due to the eccentricity of the Earth’s orbit.

Equations of Motion
The equations of motion for a solar sail with respect to a geocentric

inertial frame T⊕(x, y, z) are

ṙ = v (1)

v̇ = −(
µ⊕

/
r 3

)
r + ap + a (2)

where [r]T⊕ = [rx , ry, rz]T and [v]T⊕ = [vx , vy, vz]T are the position
and velocity vectors of the spacecraft relative to T⊕, r

�= ‖r‖ is the
spacecraft distance from the Earth, ap is the total disturbing acceler-
ation, a is the acceleration due to the solar radiation pressure, and µ⊕
is the Earth’s gravitational parameter. In this Note both the pertur-
bations due to the lunisolar gravitational attraction10 and the Earth
oblateness effects11 (up to J6) are taken into account. Assuming
that the solar sail is a flat, perfectly reflecting body, the propelling
acceleration a exerted by the solar radiation pressure P is given by

a = (2P Aη/m)(r̂�s · â)p â (3)

where A is the sail area, m is the spacecraft mass,
r̂�s

�= (r − r�)/‖r − r�‖ is the unit vector in the direction of the
incident radiation from the sun, and â

�= a/a is the unit vector in the
direction of thrust (Fig. 1). The index p is used to define the type
of solar sail, with p = 2 corresponding to a flat solar sail and p = 1
corresponding to a SPT spacecraft. Also, the term η ∈ [0, 1] repre-
sents the shadow function,12 which establishes the spacecraft umbra
(η = 0) and penumbra (0 < η < 1) conditions. Of course, η = 1 cor-
responds to a solar sail that is outside the shadow envelope. The
geocentric ephemeris for the sun (r�) and the Moon are based on
the Jet Propulsion Laboratory DE200/LE200 model.13,14 This al-
lows one to take into account the time variation in the magnitude of

Fig. 1 Reference frames and main geometric parameters.

the solar flux (about 6% in 1 year) due to the Earth’s orbit eccen-
tricity. Note that â is normal to the sail as long as an ideal flat-sail
model is assumed.

Under the hypothesis that the solar radiation pressure has an
inverse-square variation with the distance r�s from the sun, one has

P A

m
= β

2

µ�
r 2
�s

= acσ
∗µ�

4P⊕ r 2
�s

(4)

where m is the spacecraft mass, β
�= σ ∗/σ is the solar-sail lightness

number, that is, the ratio between the critical solar-sail loading pa-
rameter σ ∗ �= 1.539 g/m2 and the sail loading σ

�= m/A (see Ref. 9,
p. 40), ac is the characteristic acceleration of the solar sail, and
P⊕ ∼= 4.557 × 10−6 N/m2 is the solar radiation pressure at 1 AU.

Let Torb(xorb, yorb, zorb) be an orbital frame whose unit vectors are
îorb ≡ r̂�s , ĵorb and k̂orb. Assume that the plane zorb = 0 contains the
axis z of the T⊕ frame and yorb points toward the Earth’s north pole.
It is useful to express the components of â in the Torb frame as a
function of the thrust cone angle α

�= arccos (r̂�s · â) ∈ [0, π/2] and
of the thrust clock angle δ ∈ [−π, π ] (see Fig. 1). One has

[â]Torb = [cos α, sin α cos δ, sin α sin δ]T (5)

From Eqs. (3) and (4) it is clear that, for the same r�s and β, a SPT
gives a propelling acceleration ‖aSPT‖ greater than the correspond-
ing acceleration of a flat sail ‖aflat‖ at angles 0 < α < π/2. At α = 0
and α = π/2 the accelerations are the same. The maximum differ-
ence between ‖aSPT‖ and ‖aflat‖ (equal to 25% of ‖aflat‖) is obtained
when α = π/3.

Escape Control Law
Following Coverstone and Prussing,7 an efficient method of in-

creasing the total orbital energy E is to maximize the instantaneous
rate of energy change. Although this control logic does not deter-
mine minimum-time escape results, it has been found7 that the cor-
responding trajectories are near-minimum-time solutions as long as
low sail accelerations (on the order of 10−4g) are considered. This
is exactly the assumption made in this Note.

The escape control law is obtained as follows: Taking the scalar
product of the equation of motion (2) with the solar sail velocity
vector v and recalling that E = 1

2 v · v − µ⊕/r yields

Ė = ap · v + a · v (6)

The problem is that of finding the control law u(t) = [α(t), δ(t)]T

that at any given time, maximizes the component of the sail accel-
eration along the velocity vector. This amounts to maximizing the
performance index J

�= a · v, that is,

u = arg max
u∈U

J (7)

where U is the domain of feasible controls. The components of the
velocity vector v in the Torb frame are given by

[v]Torb = v[cos θ̃ , sin θ̃ cos δ̃, sin θ̃ sin δ̃]T with θ̃ ∈ [0, π ]
(8)

where θ̃ and δ̃ are the velocity vector cone and clock angle, respec-
tively (see Fig. 1). Substituting Eqs. (3) and (5) into Eq. (7) one has

J = [
ηβ

(
µ�

/
r 2
�s

)
v
]

cosp α(cos α cos θ̃ + sin α cos δ sin θ̃ cos δ̃

+ sin α sin δ sin θ̃ sin δ̃) (9)

The control angles α and δ that maximize J are obtained by letting
∂ J/∂u = 0. The result is

tan α = −(1 + p) cos θ̃ +
√

(1 + p)2 cos2 θ̃ + 4p sin2 θ̃

2p sin θ̃

for θ̃ ∈ [0, π ] (10)

tan δ = tan δ̃ (11)

As long as a flat-sail model is assumed (p = 2), Eq. (10) gives the
control law, which agrees with the results found in the literature.4,7
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On the other hand, assuming a SPT model (p = 1), Eq. (10) reduces
to the following simple relationship:

αSPT = θ̃/2 for θ̃ ∈ [0, π ] (12)

As a consequence of Eq. (11), the unit vectors â, r̂�s , and v̂
�= v/v

are coplanar. This allows one to remove the dependence on â in the
equations of motion [see Eqs. (2) and (5)]. The result is

â =






sin (θ̃ − α)

sin θ̃
r̂�s + sin α

sin θ̃
v̂ for θ̃ ∈ (0, π)

r̂�s for θ̃ = 0 (13)

where

cos θ̃ = v̂ · r̂�s, sin θ̃ = |v̂ × r̂�s | (14)

Observe that θ̃ = π corresponds to α = π/2 [see Eq. (10)]. Accord-
ingly, in this case all the terms containing â vanish in the equations
of motion (because a = 0). Finally, from Eqs. (12) and (13) the ac-
celeration unit vector for a SPT model is given by

âSPT =
√

1/[2(1 + cos θ̃ )](r̂�s + v̂) for θ̃ ∈ [0, π) (15)

Illustrative Results
The control laws previously described have been applied to sim-

ulating escape trajectories from the Earth using an ideal flat sail and
a SPT spacecraft. A set of canonical units15 DU⊕

�= 6378.13655 km
and TU⊕

�= 806.81103 s (µ⊕ = 1 DU3
⊕/TU2

⊕) have been used in the
integration of the equations of motion (1) and (2) to reduce their
numerical sensitivity. The differential equations were integrated in
double precision using a Runge–Kutta fifth-order scheme with ab-
solute and relative errors of 10−12. For comparative purposes, the
initial orbit is taken to be an Ariane 5 geosynchronous transfer or-
bit, with an inclination angle of 7 deg with respect to the equatorial
plane, an eccentricity e = 0.716, and a perigee altitude of 600 km.

For each of the two solar sails (flat and SPT), three different mod-
els are considered. The first (referred to as model a) neglects all the
perturbative effects on the sail [i.e., ap = 0 in Eq. (2)] and the shad-
owing effects of the Earth [i.e., η ≡ 1 in Eq. (3)]. The second, model
b, differs from model a in that it includes the shadow conditions.
Finally, model c considers both the shadow conditions and the per-
turbative effects due to the lunisolar gravitational attraction and the
Earth oblateness.

All the simulations have been performed with the same initial
orbit orientation and using a characteristic acceleration7 equal to
ac = 0.93 mm/s2. In particular, it has been assumed that the lon-
gitude of the ascending node is � = 180 deg and the argument of
the periapsis is ω = 270 deg. The simulations start when the true
anomaly is zero. Also, recall that the geocentric ephemerides for
both sun and Moon have been taken into account.

The times required to achieve escape energy for a number of
different deployment dates in the range 1/1/2004–12/31/2004 are
shown in Fig. 2. Simulations have been performed assuming a
spacecraft deployment corresponding to the 1st and the 21st of each
month. The lack of some points in the figure reveals that in some
cases the perigee radius has dropped below the Earth’s surface. The
possibility of such a situation has been reported in the literature.7

This problem may be alleviated with the aid of a blended controller,
as suggested by Macdonald and McInnes.4 Figure 2 clearly illus-
trates the superiority of a SPT spacecraft over a flat sail, with a mean
reduction of escape time on the order of 15% for the three models.

The deployment date has a significant effect on the efficiency of
the escape maneuver, with no apparent trend for increasing or de-
creasing the escape time. The link between departure date and Earth
escape time has been investigated by Macdonald and McInnes.16

Note that in some cases, model c (which includes all the perturba-
tions) behaves better than model a. The main reason for this behavior
is that the escape condition is heavily influenced by the spacecraft
position with respect to the sun when the spacecraft energy is near

a)

b)
Fig. 2 Times to escape for a) a flat sail and b) a solar-photon thrustor.

Fig. 3 Time history of energy increase for a flat sail with different
perturbation models (starting date 11/21/2004).

Fig. 4 Three-dimensional view of the solar-sail trajectories (starting
date 11/21/2004) for a flat sail and a SPT spacecraft. The black square
represents the solar-sail position after 70 days; the white circle corre-
sponds to the escape condition. Crosses are represented with a time
interval of 2 days.
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(but less than) the critical value. The variation in escape time for the
three different models is likely due to the different sun–sail positions
in the last few spirals before the escape condition is reached. In some
cases, initially similar spirals can require an extra half revolution to
reach escape, resulting in a somewhat erratic profile of escape time
as a function of launch date. The situation is illustrated in Fig. 3 for
an ideal sail. The slope of the energy plot for model a and model c
are nearly identical in the first 80 days. After that time, the spacecraft
is far enough from the Earth to gain significantly different acceler-
ations in the two cases. Assuming November 21, 2004 as a starting
date and a full set of perturbative effects (model c), a comparison
between the trajectories of an ideal flat sail and a SPT spacecraft is
shown in Fig. 4.

Conclusions
Escape trajectories from geosynchronous transfer orbit for solar

sails have been investigated. A simple control, which maximizes the
instantaneous rate of energy change, has been derived using vector
notation. The control law comprises both the case of an ideal flat
sail and the case of a solar-photon thrustor spacecraft. The latter
configuration possesses superiority over a flat sail, with a mean
reduction of escape times on the order of 15%. The analysis takes
into account the most important perturbative effects on the solar sail
and shows the importance of such effects on the escape maneuver.
The simulations clearly indicate that the sun–sail position in the last
few spirals has a significant effect on the efficiency of the escape
trajectory.
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